By Sean Greig

It is an honor and a privilege to serve the NHWPCA as president for the 2010 year. This year will bring many challenges such as windstorms, floods, more stringent permit limits, and shrinking budgets to name a few. Our committees and programs help to support our membership through these challenging times. The E-news and the NHWPCA website have been excellent sources of information for the membership. The Education and Safety committees have supplied the members with timely and up to date classes. Programs such as Operator Challenge and Operator Exchange have given our operators tools to do their job better. The Annual Trade Fair, Summer Outing, and the Fall and Winter meetings give our membership a chance to come together to discuss ideas and have some fun along the way. However, none of these things can happen without a strong diverse membership. It is important that all members get the message out about the association and what the NHWPCA has to offer. I know everyone is busy, but we need as many members as we can to step up and help make the association the best it can be.

If anyone has any questions, comments, or suggestions, please contact me at 659-8810, or by e-mail sgreig@newmarketnh.gov.
NHWPCA Board of Directors

President: Sean Greig  Vice President: Gerry Curran  Secretary: Ray Vermette  Treasurer: Nancy Lesieur  1st Director: David Lovely  2nd Director: Kristin Noel  3rd Director: John Adie  1st Director-at-large: Peter Goodwin  2nd Director-at-large: Kevin Maclean

Administrative Assistant: Linda Gaudette  NEWEA Director: Ray Vermette

2010 Spring State of NHDES Wastewater Operator Training Schedule

The 2010 Spring Training schedule is ready and can be found at the NHDES website. Along with course descriptions, class sign-up forms, and exam sign-up forms. If you have any questions or need more information contact Mary Jane Meier at (603) 271-5553 or E-mail at maryjane.meier@des.nh.gov

A Little Bit of Trivia: Did you know that … your New Hampshire Water Pollution Control Association (NHWPCA) annual fee helps subsidize funding for instructors, training materials and audiovisual equipment at the FTC in Franklin? For a NHWPCA membership application visit the website at www.nhwpca.org. Join today!

PLANT OF THE YEAR

The deadline for Plant of the Year Applications is June 30th, 2010. Applications can be found at the NHWPCA website at www.nhwpca.org.

Membership Renewals - As a reminder, dues renewals ($25) were due by January 31, 2010. Members who did not renew by February 15, 2010 were sent a reminder, but the renewal fee increased to $30. New members can join any time during the year for $25. Renewal forms as well as new member applications are available on the NHWPCA website at www.nhwpca.org/join.htm.

NHWPCA HONORARY MEMBERS

The NHWPCA Charter allows for members to become “Honorary Members”. It was decided at the January 7, 2010 Board of Director’s Meeting to grant this distinction to George Neill. Additional discussion took place in regards to a possible category of a “Lifetime Member”. The thought was presented that George Neill could be the inaugural member of this select group.

Mark your calendar for the following dates

NHWPCA Trade Fair
Thursday, April 15th at the Margate Resort in Laconia

NH Fish & Game - Discover WILD NH Day
Saturday, April 17th from 10 AM to 3 PM at NHF&G in Concord.

NHWPCA Summer Outing
Friday, June 25th
Ellacoya State Park in

NHWPCA Golf Tournament
Thursday, August 5th at the Beaver Meadows Golf Course in Concord.

Newsletter Committee

Nancy Lesieur, Steve Clifton, Chris Hipkiss, Mary Jane Meier, Stephanie Rochefort, Dave Michelsen, Joseph Laliberte, and Todd Gianott. We welcome additional members. Special thanks to this issue article writers: Paul Heirtzler, Ray Gordan, Steve Bolles, Wes Ripple. We are looking for meaningful articles for the Wastewater Operator in a timely fashion.

Editor: Steve Clifton, Director: Nancy Lesieur, Publisher: Todd Gianotti

Send COLLECTOR articles to: Steve Clifton via email at wsclifton@underwoodeng.com, c/o Underwood Engineers Inc.
Developing an Energy Management Program
By Steve Bolles, Process Energy Services

Water and wastewater facilities have been identified as large energy consumers for municipalities, which have resulted in greater energy use accountability. Our energy future is dependent on our collective ability to create energy from renewable sources and use that energy as efficiently as possible. Although the viability of renewable technologies is improving, the initial capital costs can still be daunting, even with some of the financial incentives that are available. With this in mind, many facilities recognize that energy efficiency can have a similar impact as renewable energy projects, and initially focus on these types of projects.

To reach a higher level of efficiency, some facilities have been able to take this a step further by developing a comprehensive energy management program. These facilities have realized that the most effective way to reduce energy costs is to have a plan to track savings, understand how energy is used within the facility, realize that substantial savings can be obtained by first focusing on simple operational changes, and involve staff in the process before pursing expensive energy projects.

Some of the key building blocks of a successful energy management program include the following tasks:

- Designating an Energy Program Manager
- Establishing an Energy Policy
- Selecting an Energy Management Team

Creating and implementing an energy management program will require an initial investment of staff time, however this effort will save time, money and energy in both the short and long-term.

Designate Energy Program Manager

Appointing an Energy Manager (part-time position for small facilities) is a critical component of a successful energy program. The Energy Manager is the key person that will lead an organization in achieving its efficiency goals by promoting energy performance as a core value and facilitating energy improvement projects. The selected person should be effective at leading projects, able to take responsibility and be trusted with the authority for developing, implementing, and maintaining the energy management program. The Energy Manager’s key duties should include:

- Coordinating and directing the overall energy program
- Acting as the point of contact for senior management
- Increasing the visibility of energy management within the organization
- Drafting an Energy Policy
- Creating and leading the Energy Team
- Securing sufficient resources to implement strategic energy management
- Assuring accountability and commitment from core parts of the organization
- Identifying opportunities for improvement and ensuring implementation (including staff training)
- Measuring, tracking, evaluating, and communicating results
- Obtaining recognition for achievements

A job description should be created to include the above responsibilities along with specific tasks such as tracking and reporting energy use monthly, benchmarking energy use based on process (such as flow at pump stations) or

(Continued on page 2)
temperature data (for heating fuel), investigating potential energy efficiency improvements that have been identified, and facilitating periodic energy focused staff meetings and training sessions. It will be important to allocate a specific amount of hours/week for these responsibilities.

The roles and responsibilities of the energy manager should be adjusted to reflect the tasks and duties that will provide the most value and direction for an organization, but that also can be accomplished within the time allocated for this position. While having a full time energy manager is ideal, for many organizations this is often a part-time position for an existing staff member.

**Develop an Energy Policy**

An Energy Policy provides the foundation for successful energy management. It formalizes senior management’s support and the organization’s commitment to energy efficiency for employees, shareholders, and the community. Based on the experience of the U.S. EPA ENERGY STAR partners, successful organizations have energy policies that include:

- A clear, measurable objective that reflects the organization’s commitment, culture and priorities.
- Accountability by instituting a chain-of-command, defining roles in the organization, and providing the authority for personnel to implement the energy management plan.
- Continuous improvement by including provisions for evaluating and updating the policy to reflect changing needs and priorities.
- Setting performance goals by linking energy goals to overall financial and environmental goals of the organization.

When developing an energy policy, the following should be considered:

- Have the Plant Manager issue the policy.
- Involve key people in policy development to ensure buy-in.
- Tailor the policy to the organization’s culture.
- Make it understandable to employees and the public alike.
- Consider the skills and abilities of management and employees.
- Include detail that covers day-to-day operations.
- Communicate the policy to all staff and employees, and encourage them to get involved.

**Create an Energy Management Team**

Creating an energy team helps to integrate energy management into all areas of an organization. In addition to planning and implementing specific improvements, the team also measures and tracks energy performance and communicates with management, employees and vendors.

Based on information presented in the *Watergy* manual created by Alliance to Save Energy and USAID, water utilities that have an Efficiency or Energy Management Team save far more energy than those with an informal approach to water system efficiency, as noted in the figure 1.

The purpose of creating an energy management team is to develop the resources and tools needed to maximize efficiency. The end result is to provide the same or greater benefit to the
end user while reducing operating costs, energy use, waste, and per capita energy and water consumption. The energy management team’s role is to:

- Organize and coordinate water and energy efficiency efforts
- Develop technical skills to identify and implement projects
- Assemble pertinent data to identify inefficiencies
- Create a management focus on water and energy efficiency

Creating an energy management team involves putting together the right group of people with the appropriate resources to identify opportunities, develop and implement projects, and track results.

The size of the energy team will vary depending on the size of an organization. In addition to the Energy Manager who leads the team, a representative from each operational area that affects energy use should also be included.

**Tools and Resources for the Team**

During the process of organizing an energy management team, managers need to recognize and provide resources that the team needs for success. Some of these resources include:

- **Allocating a program annual budget.** Having a budget is critical for the energy management team to obtain needed tools and expertise, commissioning technical studies, implementing appropriate projects, and providing continuity.

- **Team members need time to focus their efforts on efficiency.** It is important that department managers recognize that energy management team members will need to occasionally devote time to help collecting data to support energy efficiency projects. This includes allowing team members the ability to access key people from both inside and outside the team.

- **Training.** Appropriate training provides team members with the tools to achieve efficiency goals. Training can acquaint team members with up to date efficiency technologies, teach energy conscious operations and maintenance practices, and show managers how best to enable their staff to achieve efficiency gains.

- **Metering and monitoring equipment.** One of the first tasks of the team should be to assess the current metering and monitoring system to identify areas for improvement and determine additional equipment needs (flow meters, pressure gauges, and so on). Data can always be improved by increasing the scope and accuracy of the system’s measuring capacity.

- **Data management.** Raw data is not useful unless it is recorded, manipulated, reviewed, and shared.

- **Pursue projects.** To prevent a team’s efforts from turning into a strictly academic exercise, identified opportunities need to be implemented. Management needs to support projects that meet certain payback goals, and recognize the value of using low- or no-cost projects to help fund more capital-intensive projects. This approach can also assist in prioritizing capital improvement projects, as well as identify projects that may be available for incentive funding from local utility or state programs. The ability to document the savings potential of an individual project is often critical in obtaining these funds.

An energy management program is more than just developing individual energy improvement projects. An effective program provides a systematic approach to reducing facility energy use and costs that is structured to provide an on-going effort to continually evaluate new projects, track savings and encourage efforts within the organization to improve efficiency.

Utilities or facilities that have an established energy management program will have an easier time implementing renewable technologies and obtaining the available funding. Also these programs can be part of the local communities’ collective effort to reduce greenhouse gases and reduce energy costs.
SAFETY CORNER
THE BIG BANG THEORY
BY CHRIS HIPKISS, Franklin WWTF

Some scientist theorize that the Universe was created by a “Big Bang” which may or may not be true, however the “Big Bang” I am going to write about was a safety “Near Miss” that could have ended on a much more serious note.

The Situation

A large treatment plant with underground tunnels containing pumps and piping has, in a small above ground building, a large forced hot air furnace that is used not for heating but for driving off moisture from the tunnels during periods of high humidity. An operator was directed to go out and turn on the furnace and after several (operative word) attempts at starting the furnace reported that the burner would run but not fire.

A mechanic who had just returned from performing some maintenance work on a pump station was directed to go out to the building, housing the furnace, and see if he could get it started. He discovered that a screw in type fuse had blow and upon replacing the fuse was able to get the furnace started. Upon stepping outside the building he noted that a lot of black smoke was coming out of the furnace exhaust stack and not knowing what the problem was shut the furnace down. The mechanic then went back inside the main building to talk to the operator to ascertain if he had made any adjustments to the furnace that would cause it to smoke as badly as it was. The operator replied in the negative and they both then went back to the out building to restart the furnace. On the way out to the building they noticed that black smoke was still coming out of the stack but thought nothing of it.

Upon restarting the furnace there was truly a “BIG BANG”. The operator standing outside the building observed the rain cap on the exhaust stack being blown approximately 30 feet in the air with an accompany ten foot flame exiting the stack. Inside the building the “sight glass” normally used to observe the burners flame blew out with the resulting flame hitting the mechanic and melting his synthetic jacket which fused to his sweat shirt. Luckily the mechanic only suffered minor burns on his hands and forearms and did not need any medical assistance.

Hindsight being what it is the fact that there was black smoke coming from the stack after it had been shut down indicated that there was still excess un-burnt fuel in the furnace and when the furnace was restarted the blast of fresh oxygen caused the vaporized fuel in the furnace to explode.

The Corrective Actions

Plant management took this near miss very seriously and after compiling all the information concluded the following:

1. Because the unit was infrequently operated the preventive maintenance program for the furnace was lacking.

2. There was not a Standard Operating Procedure (SOP) for the start up of the furnace nor was it clearly defined as to who was trained or who had enough knowledge to operate the furnace since turning the unit on required more steps then just turning up a thermostat.

3. Finally several people were involved and the communications between them as to “Who did What and When” could have been better.

In Conclusion

Proper maintenance is a given in this case and there should always be a written SOP for every piece of equipment at a treatment plant especially if it is not used on a regular basis. The SOP should also contain the operational sequence of any automatic functions for the equipment. In this case an induction fan comes on followed by the burner followed by the flame and if there is not a flame then there should be an automatic shut down.

For further information on your home furnace I did find a useful web site that explains the basic operation of an oil furnace. Go to www.motherearthnews.com and key in “Oil-Furnace Troubleshooting”.

---

The NHWPCA Safety Committee needs your help! In the Committee’s efforts to promote safety in the workplace, we submit articles to the Collector describing “Near Misses” that could have resulted in an accident. We have found that operators hesitate to share their near miss experiences for a number of reasons, but the Safety Committee wants to assure you that our near miss articles do not identify where the incident occurred or who was involved; it’s anonymous. If you or someone you work with has had a near miss, please let us share the story with other operators so that we can prevent a future accident. Forward your near miss experiences to Chris Hipkiss via telephone at 603-934-2809, email at vernon.hipkiss@des.nh.gov, or mail at Winnipesaukee River Basin Bureau; P.O. Box 68; Franklin, NH 03235. Thank You!!
2009 NEWEA, WEF, & EPA Award Recipients from NH

NEWEA Operator Award

Edward Rushbrook,
Underwood Engineers

WEF Life Membership

Kevin Maclean
Town of Hanover, NH WRF

Alfred E. Peloquin Award

David Mercier
Underwood Engineers

Clair N. Sawyer Award

Terrance Campbell
Weston & Sampson, Portsmouth NH

Vernon “Chris” Hipkiss
WRBP Franklin, NH WWTF

Operations Challenge National Competition
(3rd Maintenance, 3rd Collection Systems, 3rd Overall)

SEACOAST SEWER SNAKES
John Sykora, Paul Fritz, Paula Anania, Sean Greig, Jeremy Boston and Tim Vadney

Quarter Century Operator Club

Vernon “Chris” Hipkiss
WRBP Franklin, NH WWTF

2009 EPA National On-site Technical Assistance Provider
For most Improved Plant

Wes Ripple, NHDES, Concord, NH.

2009 EPA New England Wastewater Treatment Plant O&M Excellence Award

Hanover, NH Water Reclamation Facility
The New Hampshire Department of Environmental Services (DES), along with the NH Water Pollution Control Association (NHWPCA) is organizing a Wastewater Management Candidate School. This program is designed for wastewater operators that have an interest in someday being employed in a wastewater management or superintendent position in New Hampshire. An application process is being developed this spring.

The Management Candidate School will begin in December of 2010 with an announcement at the NHWPCA winter meeting naming the 15 chosen students. The students enrolled in the program will then meet on the 3rd Tuesday of every month during 2011 for their training. The training session will be designed to expose the students to the skills, experiences and information needed to be a wastewater manager. DES staff will organize the program and will ensure that a variety of experts will speak on topics related to wastewater and management. The training will last for 12 months ending at the 2011 NHWPCA winter meeting.

In addition to the monthly training days students will use the text book “Manage for Success – Effective Utility Leadership Practices” published by Office of Water Programs, California State University, Sacramento. This text book will be used to further supplement the training experience and the course may include certification credit with California State University, Sacramento.

Individuals who wish to be considered as a possible student for NH Wastewater Management Candidate School will have to fill out an application form, receive permission from their supervisor to attend the training sessions and get a recommendation from their supervisor. This application form will be reviewed by the Wastewater Education and Training Committee. The top 15 candidates will be selected and become the first class of students for this training program. Other candidates can apply again in future classes.

This program is being molded after similar successful programs in Maine and Rhode Island. Although it is designed to provide candidates the essential skills for managing at a wastewater facility the program can not guarantee that any participant will someday become a superintendent, or be promoted. It is hoped that as vacancies are created in the wastewater field as New Hampshire professional retire, graduates of this program will be available to continue the necessary work of managing the state’s critical wastewater-treatment infrastructure and making clean water.

Wastewater operators and managers that are interested in this program are encouraged to contact Ray Gordon at ray.gordon@des.nh.gov or (603)271-3571 to express interest and to be placed on a list to receive an application package once they become available.
February 17, 2010, marked the deadline for having all American Recovery and Reinvestment Act (ARRA) of 2009 money under construction contracts. The New Hampshire Clean Water SRF (CWSRF) program at DES accomplished the feat with just over two weeks to spare. So why don’t we hear a collective sigh of relief from the SRF staff in Concord? Two reasons: the staff is too beat up to sigh and ARRA may not yet be over.

The one-year ARRA marathon began on February 17, 2009, with the signing of the bill into law by President Obama. Since that time, the six-person SRF staff processed loan paperwork, conducted public outreach, environmental reviews, reviewed design plans and specifications, performed constructability reviews and attended pre-bid meetings and bid openings for 48 new ARRA projects. This number of projects represents about four times their normal yearly workload and was in addition to their non-ARRA duties. They had to educate themselves in the nuances of Buy American and Davis Bacon wage determinations, equipment waivers and leverage, green technology and transparency reporting. They had to develop streamlined methods of doing business. They had to learn to balance the necessity for speed with the desire for accuracy. They burned a lot of midnight oil and the ARRA flame is not yet out.

ARRA work doesn’t end when the construction contract is signed because there are an additional 48 projects requiring monthly disbursement of funds, DES construction oversight, attendance at regularly scheduled construction meetings, etc. and a lot of data to collect, review, and report to EPA. These activities will continue for the life of the construction phase which is about two years on average.

Having met the ARRA deadline, the New Hampshire CWSRF program is now eligible for reallocated ARRA funds from those states that return funds to EPA because they did not meet the deadline. New Hampshire is allocated about 1% of the amount available nationally so not much in reallocated funds should be expected. However, at the same time, the Jobs for Main Street Act of 2010, otherwise known as ARRA II, looms on the horizon. Enactment could occur as early as March 2010.

Various versions of this federal legislation put forward over the past few months would provide New Hampshire with between $10 million and $30 million in ARRA-like funds for wastewater infrastructure. Like ARRA I, New Hampshire is expected to give away all the funds in the form of principal forgiveness and to leverage the funds using conventional SRF monies to provide 50% project subsidy for $20 million to $60 million in new construction.

ARRA II is expected to have all the ARRA I requirements of Buy American, Davis Bacon, 20% green project reserve and reporting. One important difference is that, while ARRA I allowed a period of one year to have all funds under contract, ARRA II is expected to only allow eight months. If true, this requirement will provide a significant challenge for New Hampshire. Why? Because ARRA I exhausted the supply of “shovel ready” projects.

DES estimates there is only about $15 million in wastewater infrastructure projects that could be under construction contract within 90 days. These are primarily projects with complete or nearly complete designs. An estimated additional $15 - $30 million in projects could meet an eight month or 240-day deadline if expedited design, review, loan and environmental review processes like those used for ARRA I are employed. Extraordinary measures such as design-build may be used to meet future ARRA deadlines. The anticipated 20% green requirement of ARRA II will require DES to solicit for new energy efficient projects.

DES strongly advises municipalities facing more stringent nitrogen and phosphorus discharge limits to appropriate funds and commence design of WWTF upgrades now to take advantage an ARRA II funding opportunity if or when available. It may be the end of an ARRA but then again….

Paul L. Heirtzler, P.E., Esq. is Administrator of the DES Wastewater Engineering Bureau.
Improving Cold Temperature Nitrification Using Insulated Covers
By Wes Ripple, Operations Specialist, Wastewater Engineering Bureau, NHDES

In January 2007, the town of Troy, New Hampshire, completed a lagoon upgrade designed to meet ammonia nitrogen limits imposed in their reissued NPDES discharge permit. The plant was required to meet a summer limit of 8.7 mg/l from May 1st through September 30th and a winter limit of 13.2 mg/l from October 1st through April 30th.

Monitoring data beginning from the reissuance of the permit in 2003 and prior to the upgrade in the fall of 2006 showed that the existing process was unable to meet the winter limit during the cold temperature months of December, January, February, March and April. During these months the average effluent ammonia nitrogen concentration was 17 mg/l with a high of 24 mg/l. Average low ambient air temperatures for January and February are typically around -13°C to -12°C (9 to 10°F), corresponding to an effluent water temperature of 2°C to 3°C (36°F to 37°F). Most textbooks state that 5°C is the minimum threshold for maintaining nitrification. Performance during the summer months of May through September was less problematic, with an average effluent ammonia nitrogen concentration of 3 mg/l, but can go as high as 16 mg/l during May. The system typically produced an effluent ammonia nitrogen concentration of < 1.0 mg/l from August through October. Effluent water temperatures during the warmest months were generally around 23°C to 24°C (73°F to 75°F), with average high ambient air temperatures of 28°C (82°F).

The Troy lagoons were originally constructed in 1983 and consisted of three aerated cells utilizing a combination of an older style fine bubble tubing aeration system and surface aerators. The original design flow was 0.265 MGD. The upgrade construction was started in the fall of 2006 and completed in January 2007. Due to the loss of flow from a major industrial contributor, the first lagoon was removed from service in an effort to decrease excessive detention times and conserve temperature. All influent flow was directed to cell #2. The process was converted to a LemTec (Lemna Technologies) Biological Treatment System consisting of LemTec Modular floating covers (full cell coverage), and an EDI Flexair diffused aeration system. Both cells were divided equally by floating baffles, essentially creating four cells. The first cell is operated as a complete mix zone through the use of two Aire-O2 floating mixers. The major advantage of the floating covers are to provide insulation against heat loss, improve nitrification and overall treatment due to a warmer environment, and reduce algae growth by preventing sunlight penetration into the water column.

On average, the covers increased the effluent temperature during the coldest months of January and February in 2008 and 2009 to 9.3°C, an increase of 7 degrees. Since the installation, excluding the first few months of operation in 2007, the lowest monthly average temperature was 8.4°C. The lowest instantaneous reading recorded was 7°C. Effluent ammonia nitrogen concentrations improved to an average of 6.6 mg/l for the December through April periods of 2008 and 2009, a decrease of 10 mg/l. The lowest monthly average was 0.4 mg/l in December 2008. The highest was 11 mg/l in April 2009. Effluent summer temperatures actually decreased by 3 - 4°C after the cover installation. Average summer effluent ammonia nitrogen concentrations for the May – September periods of 2008 and 2009 were 5.7 mg/l, an increase of 2.8 mg/l prior to the cover installation. One theory for this increase in ammonia could be that the harsh heating effects of the sun are lost due to the black covers, resulting in an overall reduction of summertime temperatures and a corresponding increase in ammonia.

Phase 2 of this project, if needed, would be to install a fixed film polishing reactor to further enhance nitrification and provide for a greater degree of reliability. Randy Luopa, Chief Operator, contributed to this article. David F. Sullivan and Associates supplied the Lemna Technologies equipment. Tata & Howard were the design engineers.

<table>
<thead>
<tr>
<th>Effluent Data Summary Prior to and after Cover Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Average winter NH₄-N, mg/l, Dec, Jan, Feb, Mar, Apr</td>
</tr>
<tr>
<td>Average summer NH₄-N, mg/l, May, June, July, Aug, Sept</td>
</tr>
<tr>
<td>Average winter temp, degrees C, Dec, Jan, Feb, Mar</td>
</tr>
<tr>
<td>Average winter temp, degrees C, Jan, Feb</td>
</tr>
<tr>
<td>Average summer temp, degrees C, May, June, July, Aug, Sept</td>
</tr>
<tr>
<td>Average summer temp, degrees C, July, Aug</td>
</tr>
<tr>
<td>Average yearly BOD, mg/l</td>
</tr>
<tr>
<td>Average yearly TSS, mg/l</td>
</tr>
</tbody>
</table>

(Continued on page 9)
Data from 2006 and 2007 were not included because they were viewed as construction and transition years and were not considered representative of established treatment.

Troy Effluent NH4-N

Winter Limit 13.2 mg/l
Summer Limit 8.7 mg/l

WINTER OLYMPICS GOLD MEDAL GAME—CANADA vs USA
Underwood Engineers, Inc. Civil-Environmental

Municipal Engineers for 28 Years

Our services include but are not limited to:

- Wastewater Facilities and Planning
- Solid Waste Facilities and Planning
- Water Facilities and Planning
- Storm Water Management
- Construction Services
- Roads and Bridges
- Site Planning
- Quality and Professional Client Service
- Technical Assistance for Town Meetings
- Community Development Block Grants
- Rural Development Loans and Grants
- State Revolving Fund
- State Aid Grants
- Permitting

Come See us at one of our two locations:

25 Vaughan Mall, Unit 1, Portsmouth, New Hampshire 03801-4012 Tel: (603) 436-6192
99 North State Street, 2nd Floor, Concord, New Hampshire 03301 Tel: (603) 230-9898

Water is essential to life.

United Water is essential to clean, safe water.

United Water, together with global leader SUEZ ENVIRONNEMENT, is dedicated to preserving and protecting water. Our new look is the symbol of our commitment to bringing you the clean, safe water you need—for drinking, for living, forever.

For more information, visit unitedwater.com
Goodbye ugly drainage ditch, hello big savings.

You’re looking at erosion control from E&P. Compoexes have integrated naturally into the site, allowing vegetation to stabilize, even with significant run-off. With no heavy drainage codes to transport and install, this solution costs less, too. The beauty of the landscape remains intact — and your balance sheet never looked better. That’s E&P quality and innovation — solutions that conserve water and save you money. E&P. Make water work for you.

Paul Sussman, Peter Kibble
(781) 421-2600

Experience
this lab has provided LOYAL and TRUSTWORTHY service since 1980

- drinking water
- groundwater & landfills
- wastewater & sludge
- soil & storm water

25 Chenal Drive | Concord, NH 03301 | 603.228.0525
WWW.EAILABS.COM

THE MAHER CORPORATION
WATER & WASTEWATER PROCESS, PUMPING & VALVE SYSTEMS

FLOW Assessment
SERVICES LLC

GEORGE HARRINGTON
MANAGING PARTNER

19 HARVEY ROAD
SUITE #22
BEDFORD, NH 03110

PHONE: 603-656-9799
FAX: 603-656-0330
CELL PHONE: 603-396-8443
gharrington@flowassessment.com

Celebrating 60
Years of Achievement


Wright-Pierce
Civil and Environmental Engineering Services

New England’s Water, Wastewater and Infrastructure Specialists

www.wright-pierce.com | (888) 621-8166
New Hampshire Water Pollution Control Association
30th Annual Trade Fair
Thursday, April 15, 2010
Margate Resort on Paugus Bay
76 Lake St. Laconia, NH 03246 603 - 524 - 5210

Agenda

8:30 am - 1:00 pm    Exhibits Open 0.2 CEU for all NHWPCA members attending

Displays of the latest environmental products and professional services in the Wastewaters Treatment Industry will be open for viewing. There will be no charge for entry into the Exhibit Hall. Complimentary coffee will be served in the Exhibit Hall until 11:00 am, at which time a cash bar opens. Please register to join us for lunch by completing and returning the form you received with payment.

TECHNICAL SESSIONS: 0.1 CEU awarded for each session to any NHWPCA member who attends

9:30 am - 10:30 am What Do You Need to Know About Flow Measurement?

Presented By Bob Mack, President, New England Environment Equipment and John Esler, President, Clarifiers, Inc.

This session will combine the basics of the “why” and “what” to do for good flow measurement with the “how to” do it at your plant or your pump station.

11:00 am Cash bar opens

12:00 pm A raffle

To benefit your Operations Challenge team and Scholarship Recipients will be held in the Exhibit Hall.

1:00 pm Formal Luncheon

 Featuring: a hot luncheon buffet to include: Boursin chicken w/broccoli and penne, beef tips in pepper sauce, potato, vegetable, garden salad, assorted rolls, beverages and dessert.

1:30 pm Awards Ceremony

Clean Water Week Poster Contest Awards

The NH Director of Environmental Services, Harry T. Steward will present these awards.

New England Water Environment Association Awards

Presented by Howard Carter - President, NEWEA
Publisher’s note: Companies with large logos are current 2010 sponsors of the NHWPCA’s newsletter: THE COLLECTOR

Become a sponsor of the NHWPCA Newsletter. Your company name, phone number and contact person will be placed in the collector each issue for only $100 per year. Contact the editor.